Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(10): e2303579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38155564

RESUMO

Specific activation of transient receptor potential vanilloid member 1 (TRPV1) channels provides a new avenue for cancer treatment by inducing excessive Ca2+ influx. However, controllable manipulation of TRPV1 signaling for clinical application has remained elusive due to the challenge in finding a mild and effective method of exerting external stimulus without adverse side effects in living systems. Herein, a TRPV1-targeting near-infrared (NIR) triggered nitric oxide (NO)-releasing nanoplatform (HCuS@PDA-TRPV1/BNN6) based on polydopamine (PDA) coated hollow copper sulfide nanoparticles (HCuS NPs) is developed for specific cancer therapy. Upon NIR irradiation, the NO donor BNN6 encapsulated in NIR-responsive nanovehicles can locally generate NO to activate TRPV1 channels and induce Ca2+ influx. This NIR controlled mode enables the nanoplatform to exert its therapeutic effects below the apoptotic threshold temperature (43°C), minimizing the photothermal damage to normal tissue. Integrating this special NO-mediated therapy with HCuS NPs mediated chemodynamic therapy, the designed nanoplatform exhibits a boosted anticancer activity with negligible systematic toxicity. Together, this study provides a promising strategy for site-specific cancer therapy by spatiotemporally controlled activation of surface ion channels, thus offering a solution to an unmet clinical need in cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Antineoplásicos/farmacologia , Raios Infravermelhos , Neoplasias/tratamento farmacológico , Óxido Nítrico/metabolismo , Fototerapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...